
Realization of Real-Time Clinical Data Integration Using Advanced Database
Technology

Sooyoung Yoo1, Boyoung Kim1, Heekyong Park1, Jinwook Choi1, Jonghoon Chun2

1Dept. of Biomedical Engineering, College of Medicine
Seoul National University, 28 Yongon-Dong Chongro-Gu Seoul, Korea

2Division of Computer, Myongji University, Young-In Kyonggido, Korea

ABSTRACT

As information & communication technologies have
advanced, interest in mobile health care systems has
grown. In order to obtain information seamlessly
from distributed and fragmented clinical data from
heterogeneous institutions, we need solutions that
integrate data. In this article, we introduce a method
for information integration based on real-time
message communication using trigger and advanced
database technologies. Messages were devised to
conform to HL7, a standard for electronic data
exchange in healthcare environments. The HL7 based
system provides us with an integrated environment in
which we are able to manage the complexities of
medical data. We developed this message
communication interface to generate and parse HL7
messages automatically from the database point of
view. We discuss how easily real time data exchange
is performed in the clinical information system, given
the requirement for minimum loading of the database
system.

INTRODUCTION

With the recent movement toward shared clinical
data in health care, a number of models, methods,
and evaluative strategies have been developed. Data
integration, especially in the medical environment, is
the most important issue that must be considered. In
2000, the Institute of Medicine (IOM) in the United
States reported that medical errors result in as many
as 98,000 deaths each year. This implies that medical
errors are the eighth leading cause of death in the
U.S., and that they nearly as high as those caused by
motor vehicle accidents (43,000), breast cancer
(42,000) and AIDS (17,000) combined [1]. The IOM
reported that the decentralized and fragmented status
of the health delivery system is the main cause of
such medical errors.

The mission of biomedical informatics is to enable
people to use information to improve health care. The
integration of data from a variety of sources will also
improve the clinical decision making process [2].

This paper describes the design and implementation
of real-time clinical data integration from a viewpoint
of database. Also, an HL7 interface that is developed
to solve the problem of plug and play interoperability
is discussed. HL7 (Health Level 7) has been proposed
as a standard for electronic data exchange in medical
environment [3], to understand data communication
and system interoperability among the various
systems.

BACKGROUND

Considerable research effort has been directed
towards acquiring integrated data, reducing
redundancy, and merging results in multiple devices
including portable devices. In our first stage multiple
devices computing project (the LEX project), we
developed a clinical information system composed of
three parts: an interface for the multiple device, a
central data repository, and an HL7 message server.
According to this system, the HL7 message server
retrieves data from the hospital’s information system,
such as basic patient information and the clinical test
results, and directs the data to the central data
repository in HL7 version 2.3.1 format [4]. We
assume multiple device environment in which
clinicians will check the clinical data via multiple
device supporting interface. The implementation of
HL7 is essential in such a heterogeneous IT
environment.
To fetch and store the patient data in the central data
repository, the data should be retrieved from the
legacy hospital information system regularly.
Because a hospital information system should be
fault tolerant, the newly induced system/application
should not interfere with the performance of the
system. On finding new data in the system, it

generates a new HL7 message and attaches the data
in a second. In the LEX project, we adopted a polling
method to monitor the new data in the legacy hospital
information system. Because of the possible overhead
to the system, we set the monitoring interval to be no
shorter than one second.

In the second mobile clinical computing project
(MobileMedTM), we constructed a triggering function
as a stored procedure in the database, which ensures
that whenever changes to the database such as data
insert or delete or update occur, it transfers data to an
external application, the HL7 message server, in real-
time. The reason is that the polling overloads to the
legacy system and creates the possibility of a time
delay. This paper details the method for the
communication between the laboratory database and
an external application.

METHODS

Architecture for Real-Time Clinical Data
Integration

We developed this prototype mobile clinical
information system called MobileMedTM, as an
integrated health care delivery system which gathers
distributed and fragmented patient clinical data into a
central clinical repository that allows healthcare
providers to access a patient’s clinical data using
multiple devices (Figure 1). If test results from the
various kinds of LIS equipment including, blood,
chemistry and urinalysis test equipment stored in the
LIS database at a medical institution, this data is
collected (or pushed) into the central clinical database
in real-time, and may be easily accessed anywhere
via available internet devices.

Figure 1: Overall Architecture of MobileMedTM
System

The architecture of real-time data integration using
the HL7 standard is shown in the Figure 2. We
designed the HL7 Message Server (HMS) as an
interface at each medical institution and the HL7
Message Archiver (HMA) as an interface for the
central clinical database. These two interfaces
communicate with each other by HL7 messages,
currently version 2.3.1 messages, on the TCP/IP
network. Also, to minimize the database

communication overheads and the amount of data to
be transmitted to the HMS, the LIS database usually
sends only small-sized data sets including several key
identifiers, to the HMS whenever interesting
transactions occur. The HMS queries again to obtain
complete data needed for fulfilling the HL7 messages
if necessary.

Figure 2: HL7 Message-based Standard Interface
Architecture

Sending Real-Time Data from LIS DBMS

Java’s safety and automatic memory management
allows for tight integration with the RDBMS. Thus,
Java and RDBMS support the rapid assembly of
component-based, network-centric applications that
can evolve gracefully as business needs change [5].
For this reason, many of the major database vendors -
Oracle, Informix, Sybase and IBM, are supporting
Java by embedding a Java Virtual Machine (JVM) in
their servers [6]. In this paper, we implemented our
system using Oracle 9i database technology. Given
the advantages of Java and database synergy, we
leveraged Java network programming into the
database system to send data from the DBMS to an
external application.

Having used this technology to design the
architecture of the database components, we
examined how to identify a specific HL7 triggering
event and how the identified event is notified to the
external application without creating database
overhead.

In our system, we needed to integrate real-time
patient recent lab test results data and service
provider information into a central clinical database.
From the viewpoint of the database, we were able to
identify the triggering event (event R01) served by
the ORU (Observational report - Unsolicited)
message in combination with the ACK message using
SQL insert statement into a specific table (a recent
lab results table in the LIS database). Because the
triggering event occurs whenever an LIS equipment
interface inserts newly results into a recent lab results
table (see Figure 3). Likewise, the SQL insert, delete
and update statements performed on a
staff/practitioner master table is represented as an

M02 trigger event for which MFN (Master File
Notification) message exchanged in combination
with an MFK (Master File Application
Acknowledgement) message.

Figure 3 shows the relationships between key tables
of LIS database.

Figure 3: Partial LIS Database Schema

And the embedded database modules are composed
of a set of Java stored procedures and database
trigger, as can be seen in Figure 4.
Java Stored procedures are Java methods published to
SQL and stored in databases for general use [5]. The
reason we imported a Java stored procedure is that
Java is becoming the stored procedure language of
choice, promising portability and safety. In addition,
by using a portable stored procedure language, code
can be transferred between servers from different
vendors, vendor-specific training is reduced and
database-independent applications can be distributed
with application-specific stored procedure codes [6].

Figure 4: Architecture for transferring real -time
data

The database triggers and stored procedures shown in
Figure 4 functions as follows;

XML Wrapper: This is a Java stored procedure that
returns XML formatted ASCII text on the basis of the
value of its parameters. The reason we choose XML
encoded messaging for communications between
DBMS and the external applications is that XML
provides a consistent, language-independent interface

for programmers while providing full flexibility in
determining the granularity and consistency of the
information as accessed.

Event Sender: To send real-time data from DBMS to
an external program, we implemented network
programming using a TCP socket in Java. This is a
Java stored procedure that sends an XML string
received by its parameter to an external program
using an instance of socket upon the TCP protocol. In
addition, to assuring communication reliability
without any data loss or failure, we verified the
successful receipt or failure of the transmission by
checking the received acknowledgement. That is, if
the socket connection fails or doesn’t receive any
acknowledgement, it inserts a data failed to send into
an event_log table, which is designed to keep data
temporarily until the connection is re-establish
successfully. To resend the data in the event_log table
without database load, we defined a new HL7 trigger
event “Z01” which is triggered only once to indicate
that the event_log table has more than one record.
Using this trigger event, we transferred only small-
sized XML data like ”<?xml version='1.0'?><doc
event='Z01'></doc>” when the network is available.
We then expected the external application to select
and delete all records fro m the event_ log table after
receiving Z01 events.

After insert trigger on recent lab results table: This
trigger is fired after a row is inserted into the recent
lab results table. Because a database trigger can
invoke the Java stored procedure, a triggered
observation reporting event can be notified to an
external application using the previously discussed
XML wrapper and Event Sender procedures. That is,
just after encoding data elements in XML format
using its appropriate XML wrapper, we can easily
send the encoded XML data to external application
by calling the Event Send procedure.

After insert or update or delete trigger on
staff/practitioner master table: This trigger is fired
after insert or update or delete on our
staff/practitioner master file. This trigger notifies the
occurrence of an event to an external application
using above XML wrapper and Event Sender
procedure, as explained before.

To minimize database communication overhead, we
used the following two methods to notify specific
events in real-time.
First, If the trigger events cause frequent data
communications or the data elements for its HL7
message are dispersed on several tables, with a
complex relationship, we transfer only key elements
to identify each trigger event from the DBMS. For

example, Figure 5 shows the key data tagged with
XML attributes and elements including the trigger
event type, observation code, patient number, service
of battery code and specimen number. This XML
document is sent from the database, and then the
receiving application retrieves all the additional data
it needs from the database. In addition, using the
database view approach, we could design a receiving
application logically independent of the database.
Second, If the trigger events occurs infrequently and
the triggered table has enough data for its HL7
message, with a size of less than 1000 characters, all
the data elements required for the HL7 message can
be transmitted without database load. For example,
when the master file notification event are triggered,
we sent the XML documents contain all the
information needed for the staff/practitioner master
file notification message.

Figure 5: DTD of XML document generated after
insert trigger on a recent lab results table

HL7 Message Server (HMS)

The HMS is the interface that automatically generates
HL7 V2.X messages from the LIS database and
exchanges messages with the central clinical database.
Figure 6 shows the overall architecture of the HMS.
We designed two approaches for generating messages.
One is based on database query and the other is based
on XML. First, the database query approach is
appropriate when the HMS receives an event that
contains only key identifying information such as
Figure 5, from database. In this case, a database
query is necessary to obtain the actual data needed to
fulfill a complete message like unsolicited
observation reporting message. At this time, the
database query is issued to views for HL7 messages
as shown in Figure 5. We defined views to make
HMS independent of a specific database schema. The
second approach based on XML is suited for master
file notification messages, because the event coming
from the database contains all information needed for
this message.
For either of each message generation mechanism,
additional message segments can be added easily to
address institution specific requirements. Because

message contents can be different according to the
view data or XML formatted data.

Figure 6: Architecture of the HL7 Message

Server

HL7 Message Archiver (HMA)

The HMA is an interface on the central clinical data
server side that processes a large number of HL7
messages from the HMS, and interacts with the
central clinical database. It is composed of two
components, a message receiver and a
parser&mapper. To process large messages from
heterogeneous medical institutions, the receiver
notifies the events about incoming messages to the
parser&mapper using UDT protocol.

Figure 7: User Interface for monitoring the HMS

We implemented the HMS and the HMA using MS
Visual Basic 6.0 on a Windows 2000 Server. Figure 7
shows the user interface used for monitoring HMS’s
operation. Each of the three sections of Figure 7
displays sent messages, sending messages, received
ack messages. Figure 8 shows the two components of
the HMA, receiver and parser&mapper.

Figure 8: Receiver, Parser&Mapper of the HMA

RESULTS

The described system is a prototype that has been
developed over 2 years from 2001. During this
project, each of the six kinds of the clinical
laboratory test results - routine CBC, blood
coagulation test, chemistry test (I), chemistry test (II),
serology, routine urinalysis – were sent to the LIS
database from LIS equipment when it was generated.
To share clinical results with other institutions, the
data in the LIS database is gathered into CCDB using
HL7 messages. Currently we exchange with HL7
V2.3.1 message, however, the HL7 message version
can be extended to any 2.X message.

CONCLUSIONS

In this paper, we present a mobile clinical
information system MobileMedTM, which integrates
distributed patient clinical data using a standard
interface and advanced database and information
technologies. To achieve seamless integration in real-
time, we implemented a socket network between
DBMS and external applications using a Java stored
procedure.

This system represents the future of the health care
system, where patient clinical data can be easily
shared among authorized practitioners/institutions
and easily accessed anywhere via the internet.

In future work, we plan to solve the lack of
interoperability for information representation with
unified ontology in regard to having the same
meaning in codes, vocabulary, terminology, context,
and other means of information representation.

REFERENCES

[1] RE Rouse, JS Charlson. The evolution of
eHealth. Lehman Brothers report, 2000

[2] W. Stead, R. Miller, M. Musen et. al.
Integration and beyond. JAMIA 2002. 135-
145

[3] http://www.hl7.org
[4] Sooyoung Yoo, Boyoung Kim, Seungbin H

an, Youngchul Lee, Jinwook Choi, Jaeheon
 Cheong, Minkyung Lee, Jonghoon Chun.
Automatic RIM (Reference Information M
odel) Wrapper for LEX : Lifelong Electroni
c Health Record Based on XML.
AMIA 2001.

[5] http://otn.orcle.com/
[6] http://www.firstsql.com/

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: AMIA 2003 Symposium Proceedings − Page 738
	02: AMIA 2003 Symposium Proceedings − Page 739
	03: AMIA 2003 Symposium Proceedings − Page 740
	04: AMIA 2003 Symposium Proceedings − Page 741
	05: AMIA 2003 Symposium Proceedings − Page 742

